The effects of a digital health intervention on patient activation in chronic kidney disease

0
The effects of a digital health intervention on patient activation in chronic kidney disease
  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709-733 (2020).

  • Kidney Research UK. Kidney disease: A UK public health emergency. The health economics of kidney disease to 2033. (2023).

  • Hull, S. A., Nitsch, D., Caplin, B., Griffith, K. & Wheeler, D. C. The National CKD Audit: a primary care condition that deserves more attention. Br. J. Gen. Pract. : J. R. Coll. Gen. Practitioners 68, 356–357 (2018).

    Article 

    Google Scholar 

  • Kovesdy, C. P. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl. (2011) 12, 7–11 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Greer, R. C., Crews, D. C. & Boulware, L. E. Challenges perceived by primary care providers to educating patients about chronic kidney disease. J. Ren. Care 38, 174–181 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuot, D. S. et al. CKD awareness in the general population: performance of CKD-specific questions. Kidney Med. 1, 43–50 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, M. et al. A narrative review of chronic kidney disease in clinical practice: current challenges and future perspectives. Adv. Ther. 39, 33–43 (2022).

    Article 
    PubMed 

    Google Scholar 

  • NHS England. The NHS Long Term Plan (2019).

  • National Institute for Health and Care Excellence (NICE). Chronic Kidney Disease: Assessment And Management (2021).

  • Lightfoot, C. J. et al. Patient activation: the cornerstone of effective self-management in chronic kidney disease? Kidney Dialysis 2, 91–105 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Hibbard, J. H., Stockard, J., Mahoney, E. R. & Tusler, M. Development of the Patient Activation Measure (PAM): conceptualizing and measuring activation in patients and consumers. Health Serv. Res. 39, 1005–1026 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lightfoot, C. J. et al. The codevelopment of “My Kidneys & Me”: a digital self-management program for people with chronic kidney disease. J. Med. Internet Res. 24, e39657 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lightfoot, C. J., Wilkinson, T. J., Yates, T., Davies, M. J. & Smith, A. C. ‘Self-Management Intervention through Lifestyle Education for Kidney health’ (the SMILE-K study): protocol for a single-blind longitudinal randomised controlled trial with nested pilot study. BMJ Open 12, e064916 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hibbard, J. H., Greene, J. & Tusler, M. Improving the outcomes of disease management by tailoring care to the patient’s level of activation. Am. J. Manag Care 15, 353–360 (2009).

    PubMed 

    Google Scholar 

  • Lindsay, A., Hibbard, J. H., Boothroyd, D. B., Glaseroff, A. & Asch, S. M. Patient activation changes as a potential signal for changes in health care costs: cohort study of US high-cost patients. J. Gen. Intern. Med. 33, 2106–2112 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, V. M. et al. Increasing patient activation through diabetes self-management education: Outcomes of DESMOND in regional Western Australia. Patient Educ. Couns. 103, 848–853 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Shah, V. O. et al. A home-based educational intervention improves patient activation measures and diabetes health indicators among Zuni Indians. PLoS ONE 10, e0125820 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deen, D., Lu, W.-H., Rothstein, D., Santana, L. & Gold, M. R. Asking questions: the effect of a brief intervention in community health centers on patient activation. Patient Educ. Couns. 84, 257–260 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lightfoot, C. J., Wilkinson, T. J., Memory, K. E., Palmer, J. & Smith, A. C. Reliability and validity of the patient activation measure in kidney disease: results of rasch analysis. Clin. J. Am. Soc. Nephrol. 16, 880–888 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Narva, A. S., Norton, J. M. & Boulware, L. E. Educating patients about CKD: the path to self-management and patient-centered care. Clin. J. Am. Soc. Nephrol. 11, 694–703 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tuot, D. S. et al. Variation in patients’ awareness of CKD according to how they are asked. Clin. J. Am. Soc. Nephrol. 11, 1566–1573 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devraj, R., Borrego, M. E., Vilay, A. M., Pailden, J. & Horowitz, B. Awareness, self-management behaviors, health literacy and kidney function relationships in specialty practice. World J. Nephrol. 7, 41–50 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkinson, T. J., Memory, K., Lightfoot, C. J., Palmer, J. & Smith, A. C. Determinants of patient activation and its association with cardiovascular disease risk in chronic kidney disease: a cross-sectional study. Health Expect. 24, 843–852 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magadi, W. et al. Patient activation and its association with symptom burden and quality of life across the spectrum of chronic kidney disease stages in England. BMC Nephrol. 23, 45 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, M. L. et al. Patient activation with knowledge, self-management and confidence in chronic kidney disease. J. Ren. Care 42, 15–22 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Vélez-Bermúdez, M., Christensen, A. J., Kinner, E. M., Roche, A. I. & Fraer, M. Exploring the relationship between patient activation, treatment satisfaction, and decisional conflict in patients approaching end-stage renal disease. Ann. Behav. Med. 53, 816–826 (2019).

  • Gair, R. M. et al. Transforming Participation In Chronic Kidney Disease: Programme Report (Renal Association, 2019).

  • Greenwood, S. A. et al. Evaluating the effect of a digital health intervention to enhance physical activity in people with chronic kidney disease (Kidney BEAM): a multicentre, randomised controlled trial in the UK. The Lancet Digital Health, 6, e23–e32 (2023).

  • Barker, F., Atkins, L. & de Lusignan, S. Applying the COM-B behaviour model and behaviour change wheel to develop an intervention to improve hearing-aid use in adult auditory rehabilitation. Int. J. Audiol. 55, S90–S98 (2016).

    Article 
    PubMed 

    Google Scholar 

  • O’Connor, S. et al. Understanding factors affecting patient and public engagement and recruitment to digital health interventions: a systematic review of qualitative studies. BMC Med. Inform. Decis. Mak. 16, 120 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smekal, M. D. et al. Enhancing primary care capacity in chronic kidney disease management: a quality improvement educational initiative. BMJ Open 11, e046068 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shlipak, M. G. et al. The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 99, 34–47 (2021).

    Article 
    PubMed 

    Google Scholar 

  • NHS England & NHS Improvement. The Interface Between Primary And Secondary Care: Key Messages For NHS Clinicians And Managers (NHS, 2017).

  • Mallinckrodt, C. H., Watkin, J. G., Molenberghs, G. & Carroll, R. J. Choice of the primary analysis in longitudinal clinical trials. Pharm. Stat. 3, 161–169 (2004).

    Article 

    Google Scholar 

  • Siddiqui, O., Hung, H. M. J. & O’Neill, R. MMRM vs. LOCF: a comprehensive comparison based on simulation study and 25 NDA datasets. J. Biopharm. Stat. 19, 227–246 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Fitzmaurice, G. M., Laird, N. M. & Ware, J. H. Applied Longitudinal Analysis (John Wiley & Sons, 2004).

  • Dinh, P. & Yang, P. Handling baselines in repeated measures analyses with missing data at random. J. Biopharm. Stat. 21, 326–341 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Lightfoot, C. J. et al. Improving self-management behaviour through a digital lifestyle intervention: an internal pilot study. J. Ren. Care 50, 283–296 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Kanu, C., Brown, C., Barner, J., Chapman, C. & Walker, H. The effect of a tailored patient activation intervention in inflammatory bowel disease patients. J. Contemp. Pharm. Pract. 66, 11–21 (2020).

    Article 

    Google Scholar 

  • Schulz, K. F., Altman, D. G. & Moher, D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med. 7, e1000251 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hadjiconstantinou, M. et al. Using Intervention Mapping to Develop a Digital Self-Management Program for People With Type 2 Diabetes: Tutorial on MyDESMOND. J. Med. Internet Res. 22, e17316 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies, M. J. et al. Effectiveness of the diabetes education and self management for ongoing and newly diagnosed (DESMOND) programme for people with newly diagnosed type 2 diabetes: cluster randomised controlled trial. BMJ 336, 491–495 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Corbin, J. M. & Strauss, A. Unending Work And Care: Managing Chronic Illness At Home (Jossey-Bass, 1988).

  • Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michie, S. et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann. Behav. Med. 46, 81–95 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Schwarzer, R. Self-efficacy: Thought Control Of Action. p. 217-243 (Hemisphere Publishing Corp, 1992).

  • Leventhal, H., Meyer, D. & Nerenz, D. Medical Psychology (S., RACHMAN, 1980).

  • Bandura, A. Social cognitive theory of self-regulation. Organ Behav. Hum. Decis. Process 50, 248–287 (1991).

    Article 

    Google Scholar 

  • Hibbard, J. H., Mahoney, E. R., Stockard, J. & Tusler, M. Development and testing of a short form of the patient activation measure. Health Serv. Res. 40, 1918–1930 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devraj, R. & Wallace, L. S. Application of the content expert process to develop a clinically useful low-literacy Chronic Kidney Disease Self-Management Knowledge Tool (CKD-SMKT). Res. Soc. Adm. Pharm. 9, 633–639 (2013).

    Article 

    Google Scholar 

  • Brown, S. A. et al. Kidney symptom questionnaire: development, content validation and relationship with quality of life. J. Renal Care, 44, 162–173 (2018).

  • Malmstrom, T. K., Miller, D. K., Simonsick, E. M., Ferrucci, L. & Morley, J. E. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 7, 28–36 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ahmad, S. et al. Evaluation of reliability and validity of the General Practice Physical Activity Questionnaire (GPPAQ) in 60–74 year old primary care patients. BMC Fam. Pract. 16, 113 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkinson, T. J., Palmer, J., Gore, E. F. & Smith, A. C. The validity of the ‘General Practice Physical Activity Questionnaire’ against accelerometery in patients with chronic kidney disease. Physiother. Theory Pract. 38, 1–10 (2020).

  • England, C. Y., Thompson, J. L., Jago, R., Cooper, A. R. & Andrews, R. C. Development of a brief, reliable and valid diet assessment tool for impaired glucose tolerance and diabetes: the UK Diabetes and Diet Questionnaire. Public Health Nutr. 20, 191–199 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Chan, A. H. Y., Horne, R., Hankins, M. & Chisari, C. The Medication Adherence Report Scale: a measurement tool for eliciting patients’ reports of nonadherence. Br. J. Clin. Pharmacol. 86, 1281–1288 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Jabi, S. W. et al. Depression in patients treated with haemodialysis: a cross-sectional study. Lancet 391, 41 (2017).

    Article 

    Google Scholar 

  • Kieser, M. & Friede, T. Re-calculating the sample size in internal pilot study designs with control of the type I error rate. Stat. Med. 19, 901–911 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harden, M. & Friede, T. Sample size recalculation in multicenter randomized controlled clinical trials based on noncomparative data. Biom. J. 62, 1284–1299 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Wittes, J. & Brittain, E. The role of internal pilot studies in increasing the efficiency of clinical trials. Stat. Med 9, 65–71 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friede, T. & Kieser, M. Sample size recalculation in internal pilot study designs: a review. Biom. J. 48, 537–555 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Chin, R. & Lee, B. Principles And Practice Of Clinical Trial Medicine. p. 303–323 (Academic Press, 2008).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *