Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment

Brain tumors – classifications, symptoms, diagnosis and treatments. https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Brain-Tumors.
Fan, Y. et al. Burden and trends of brain and central nervous system cancer from 1990 to 2019 at the global, regional, and country levels. Arch. Public Health 80, 209 (2022).
Ostrom, Q. T. et al. CBTRUs statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neuro. Oncol. 24, V1–V95 (2022).
Google Scholar
About Glioblastoma. National Brain Tumor Society.
Fekete, B. et al. What predicts survival in glioblastoma? A population-based study of changes in clinical management and outcome. Front. Surg. 10, 1249366 (2023).
Google Scholar
Al Sharie, S., Abu Laban, D. & Al-Hussaini, M. Decoding diffuse midline gliomas: a comprehensive review of pathogenesis, diagnosis and treatment. Cancers (Basel). 15, 4869 (2023).
Google Scholar
Acuña-Villaorduña, A., Baranda, J. C., Boehmer, J., Fashoyin-Aje, L. & Gore, S. D. Equitable access to clinical trials: how do we achieve it? Am. Soc. Clin. Oncol. Educ. B. (2023).
Lamba, N. et al. Socioeconomic disparities associated with MGMT promoter methylation testing for patients with glioblastoma. JAMA Oncol. 6, 1972–1974 (2020).
Porter, A. B., Wen, P. Y. & Polley, M.-Y. C. Molecular profiling in neuro-oncology: where we are, where we’re heading, and how we ensure everyone can come along. Am. Soc. Clin. Oncol. Educ. B. (2023).
Xiao, F. et al. Cerebrospinal fluid biomarkers for brain tumor detection: clinical roles and current progress. Am. J. Transl. Res. 12, 1379–1396 (2020).
Villanueva-Meyer, J. E., Mabray, M. C. & Cha, S. Current clinical brain tumor imaging. Neurosurgery 81, 397–415 (2017).
Google Scholar
Weinberg, B. et al. Nimg-23. Brain tumor reporting and data system (bt-rads) and quantitative tools to guide its implementation. Neuro. Oncol. 21, vi166 (2019).
Atanasov, A. G. et al. First, do no harm (gone wrong): total-scale analysis of medical errors scientific literature. Front. Public Heal. 8, 558913 (2020).
Google Scholar
Aldape, K. et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol. 16, 509 (2019).
Google Scholar
Bi, W. L. et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA. Cancer J. Clin. 69, 127–157 (2019).
Dong, X. et al. 911 Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer 11, e005583 (2022).
Becker, A. P., Sells, B. E., Jaharul Haque, S. & Chakravarti, A. Tumor heterogeneity in glioblastomas: from light microscopy to molecular pathology. Cancers (Basel). 13, 1–25 (2021).
Google Scholar
Stone, J. B. & DeAngelis, L. M. Cancer-treatment-induced neurotoxicity-focus on newer treatments. Nat. Rev. Clin. Oncol. 13, 92–105 (2016).
Monsour, R., Dutta, M., Mohamed, A. Z., Borkowski, A. & Viswanadhan, N.A. Neuroimaging in the era of artificial intelligence: current applications. Fed. Pract. 39, S14–S20 (2022).
Google Scholar
Philip, A. K., Samuel, B. A., Bhatia, S., Khalifa, S. A. M. & El-Seedi, H. R. Artificial intelligence and precision medicine: a new frontier for the treatment of brain tumors. Life. 13, 24 (2023).
Dundar, T. T. et al. Machine learning-based surgical planning for neurosurgery: artificial intelligent approaches to the cranium. Front. Surg. 9, 863633 (2022).
Google Scholar
Mock, M., Edavettal, S., Langmead, C. & Russell, A. AI can help to speed up drug discovery — but only if we give it the right data. Nature 621, 467–470 (2023).
Qureshi, R. et al. AI in drug discovery and its clinical relevance. Heliyon 9, e17575 (2023).
Pati, S. et al. Federated learning enables big data for rare cancer boundary detection. Nat. Commun. 13, 7346 (2022).
Google Scholar
Schork, N. J. Artificial intelligence and personalized medicine. Cancer Treat. Res. 178, 265 (2019).
Google Scholar
Uddin, M., Wang, Y. & Woodbury-Smith, M. Artificial intelligence for precision medicine in neurodevelopmental disorders. npj Digit. Med. 2, 1–10 (2019).
Google Scholar
Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Artificial intelligence in surgery: promises and perils. Ann. Surg. 268, 70–76 (2018).
Google Scholar
Chen, R. J. et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).
Thomasian, N. M., Eickhoff, C. & Adashi, E. Y. Advancing health equity with artificial intelligence. J. Public Health Policy 42, 602–611 (2021).
Zheng, Y., Carrillo-Perez, F., Pizurica, M., Heiland, D. H. & Gevaert, O. Spatial cellular architecture predicts prognosis in glioblastoma. Nat. Commun. 14, 4122 (2023).
Google Scholar
Wu, J. et al. Radiological tumour classification across imaging modality and histology. Nat. Mach. Intell. 3, 787–798 (2021).
Google Scholar
García-Figueiras, R. et al. Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer? Diagn. Interv. Radiol. 22, 75–89 (2016).
Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).
Google Scholar
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro. Oncol. 23, 1231–1251 (2021).
Google Scholar
Alix-Panabières, C. & Pantel, K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 11, 858–873 (2021).
Google Scholar
Yang, H. et al. Cerebrospinal fluid-derived circulating tumor DNA is more comprehensive than plasma in NSCLC patients with leptomeningeal metastases regardless of extracranial evolution. Heliyon 8, e12374 (2022).
Google Scholar
Lehner, K. R., Jiang, K., Rincon-Torroella, J., Perera, R. & Bettegowda, C. Cerebrospinal fluid biomarkers in pediatric brain tumors: a systematic review. Neoplasia 35, 100852 (2023).
Google Scholar
Liu, H. et al. M3AE: multimodal representation learning for brain tumor segmentation with missing modalities. Proc. AAAI Conf. Artif. Intell. 37, 1657–1665 (2023).
Clark, K. et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013).
Google Scholar
Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015).
Google Scholar
Therapeutically applicable research to generate effective treatments (TARGET) – NCI. https://www.cancer.gov/ccg/research/genome-sequencing/target.
GDC. https://portal.gdc.cancer.gov/.
Welcome to the cancer imaging archive – the cancer imaging archive (TCIA). https://www.cancerimagingarchive.net/.
Xia, M., Wang, J. & He, Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One 8, e68910 (2013).
Google Scholar
Sun, L., Zhang, S., Chen, H. & Luo, L. Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, 810 (2019).
Google Scholar
Feng, X., Tustison, N. J., Patel, S. H. & Meyer, C. H. Brain tumor segmentation using an ensemble of 3D U-nets and overall survival prediction using radiomic features. Front. Comput. Neurosci. 14, 25 (2020).
Google Scholar
ZainEldin, H. et al. Brain tumor detection and classification using deep learning and sine-cosine fitness grey wolf optimization. Bioengineering 10, 1–19 (2023).
Latif, G., Iskandar, D. N. F. A., Alghazo, J. & Butt, M. M. Brain MR image classification for glioma tumor detection using deep convolutional neural network features. Curr. Med. imaging 17, 56–63 (2021).
Google Scholar
Saeedi, S., Rezayi, S., Keshavarz, H. & R. Niakan Kalhori, S. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Med. Inform. Decis. Mak. 23, 16 (2023).
Google Scholar
Bhandari, A., Koppen, J. & Agzarian, M. Convolutional neural networks for brain tumour segmentation. Insights Imaging 11, 77 (2020).
Google Scholar
Chen, S., Ding, C. & Liu, M. Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recognit. 88, 90–100 (2019).
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2021).
Google Scholar
Steyaert, S. et al. Multimodal deep learning to predict prognosis in adult and pediatric brain tumors. Commun. Med. 3, 44 (2023).
Google Scholar
Kamnitsas, K. et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017).
Google Scholar
Milletari, F., Navab, N. & Ahmadi, S. A. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 565–571 (2016).
Tests for Brain and Spinal Cord Tumors in Adults.
Nasrallah, M. P. et al. Molecular neuropathology in practice: clinical profiling and integrative analysis of molecular alterations in glioblastoma. Acad. Pathol. 6, 2374289519848353 (2019).
Afridi, M., Jain, A., Aboian, M. & Payabvash, S. Brain tumor imaging: applications of artificial intelligence. Semin. Ultrasound Ct. MR 43, 153–169 (2022).
Google Scholar
Ellingson, B. M., Wen, P. Y., Van Den Bent, M. J. & Cloughesy, T. F. Pros and cons of current brain tumor imaging. Neuro. Oncol. 16, vii2 (2014).
Google Scholar
Ghandour, F. et al. Presenting psychiatric and neurological symptoms and signs of brain tumors before diagnosis: a systematic review. Brain Sci. 11, 1–20 (2021).
Google Scholar
Grant, R. et al. Interventions to reduce the time to diagnosis of brain tumours. Cochrane Database Syst. Rev. 9, CD013564 (2020).
Google Scholar
Iijima, K. et al. Microrecording and image-guided stereotactic biopsy of deep-seated brain tumors. J. Neurosurg. 123, 978–988 (2015).
Google Scholar
Luo, Q., Li, Y., Luo, L. & Diao, W. Comparisons of the accuracy of radiation diagnostic modalities in brain tumor: a nonrandomized, nonexperimental, cross-sectional trial. Med. 97, e11256 (2018).
Google Scholar
Histed, S. N. et al. Review of functional/ anatomic imaging in oncology. Nucl. Med. Commun. 33, 349 (2012).
Google Scholar
Riche, M. et al. Complications after frame-based stereotactic brain biopsy: a systematic review. Neurosurg. Rev. 44, 301–307 (2021).
Google Scholar
Keane, L., Cheray, M., Blomgren, K. & Joseph, B. Multifaceted microglia – key players in primary brain tumour heterogeneity. Nat. Rev. Neurol. 17, 243–259 (2021).
Google Scholar
Martucci, M. et al. Magnetic resonance imaging of primary adult brain tumors: state of the art and future perspectives. Biomedicines 11, 364 (2023).
Google Scholar
Zhang, B., Shi, H. & Wang, H. Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach. J. Multidiscip. Healthc. 16, 1779–1791 (2023).
Bauer, A. H., Erly, W., Moser, F. G., Maya, M. & Nael, K. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology 57, 697–703 (2015).
Google Scholar
Voicu, I. P. et al. Differentiating solitary brain metastases from high-grade gliomas with MR: comparing qualitative versus quantitative diagnostic strategies. Radiol. Med. 127, 891–898 (2022).
Google Scholar
Kunimatsu, A. et al. Texture analysis in brain tumor MR imaging. Magn. Reson. Med. Sci. 21, 95–109 (2022).
Google Scholar
Soni, X. N., Priya, S. & Bathla, X. G. Texture analysis in cerebral gliomas: a review of the literature. AJNR Am. J. Neuroradiol. 40, 928 (2019).
Google Scholar
Bharath, K., Kurtek, S., Rao, A. & Baladandayuthapani, V. Radiologic image-based statistical shape analysis of brain tumours. J. R. Stat. Soc. Ser. C. Appl. Stat. 67, 1357–1378 (2018).
Google Scholar
Rajan, P. G. & Sundar, C. Brain tumor detection and segmentation by intensity adjustment. J. Med. Syst. 43, 282 (2019).
Google Scholar
Kader et al. Brain tumor detection and classification on MR images by a deep wavelet auto-encoder model. Diagnostics 11, 1589 (2021).
Google Scholar
Nie, D. et al. Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci. Rep. 9, 1–14 (2019).
Google Scholar
Srinivas, C. et al. Deep transfer learning approaches in performance analysis of brain tumor classification using MRI images. J. Healthc. Eng. 2022, 3264367 (2022).
Google Scholar
Ali, H. et al. The role of generative adversarial networks in brain MRI: a scoping review. Insights Imaging 13, 98 (2022).
Google Scholar
Guo, W. et al. Multiparametric MRI-based radiomics model for predicting H3 K27M mutant status in diffuse midline glioma: a comparative study across different sequences and machine learning techniques. Front. Oncol. 12, 796583 (2022).
Google Scholar
Kihira, S. et al. Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion. Neuro-Oncol. Adv. 3, vdab051 (2021).
Google Scholar
Schepke, E. et al. DNA methylation profiling improves routine diagnosis of paediatric central nervous system tumours: a prospective population-based study. Neuropathol. Appl. Neurobiol. 48, e12838 (2022).
Google Scholar
Hollon, T. et al. Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging. Nat. Med. 29, 828–832 (2023).
Google Scholar
Kim, M. et al. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Eur. Radiol. 30, 2142–2151 (2020).
Google Scholar
Sun, Z. et al. Prediction of IDH mutation status of glioma based on terahertz spectral data. Spectrochim. Acta A Mol. Biomol. Spectrosc. 295, 122629 (2023).
Google Scholar
Hajri, R., Nicod-Lalonde, M., Hottinger, A. F., Prior, J. O. & Dunet, V. Prediction of glioma grade and IDH status using 18F-FET PET/CT dynamic and multiparametric texture analysis. Diagnostics 13, 2604 (2023).
Google Scholar
Yan, J. et al. Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study. Lab. Investig. 102, 154–159 (2022).
Google Scholar
Murdaugh, R. L. & Anastas, J. N. Applying single cell multi-omic analyses to understand treatment resistance in pediatric high grade glioma. Front. Pharmacol. 14, 1002296 (2023).
Kool, M. et al. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3, e3088 (2008).
Google Scholar
Bender, K. et al. High-grade astrocytoma with piloid features (HGAP): the Charité experience with a new central nervous system tumor entity. J. Neurooncol. 153, 109–120 (2021).
Google Scholar
Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Neuro. Oncol. 622, 842–849 (2023).
Rees, J. H. Diagnosis and treatment in neuro-oncology: an oncological perspective. Br. J. Radiol. 84, S82–S89 (2011).
Google Scholar
Mariotto, A. B. et al. Cancer survival: an overview of measures, uses, and interpretation. J. Natl Cancer Inst. Monogr. 2014, 145–186 (2014).
Google Scholar
Kickingereder, P. et al. Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280, 880–889 (2016).
Google Scholar
Prasanna, P., Patel, J., Partovi, S., Madabhushi, A. & Tiwari, P. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: preliminary findings. Eur. Radiol. 27, 4198–4199 (2017).
Google Scholar
Kickingereder, P. et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro. Oncol. 20, 848–857 (2018).
Google Scholar
Kim, J. Y. et al. Radiomics in peritumoral non-enhancing regions: fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma. Neuroradiology 61, 1261–1272 (2019).
Google Scholar
Li, G. et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas. Brain 145, 1151–1161 (2022).
Google Scholar
Iyer, S. et al. Novel MRI deformation-heterogeneity radiomic features are associated with molecular subgroups and overall survival in pediatric medulloblastoma: preliminary findings from a multi-institutional study. Front. Oncol. 12, 915143 (2022).
Google Scholar
Long, H. et al. MRI radiomic features of peritumoral edema may predict the recurrence sites of glioblastoma multiforme. Front. Oncol. 12, 1042498 (2023).
Zhou, T. et al. Prediction of brain tumor recurrence location based on multi-modal fusion and nonlinear correlation learning. Comput. Med. Imaging Graph. 106, 102218 (2023).
Google Scholar
Śledzińska, P., Bebyn, M. G., Furtak, J., Kowalewski, J. & Lewandowska, M. A. Prognostic and predictive biomarkers in gliomas. Int. J. Mol. Sci. 22, 10373 (2021).
Wang, C., Zhu, X., Hong, J. C. & Zheng, D. Artificial intelligence in radiotherapy treatment planning: present and future. Technol. Cancer Res. Treat. 18, (2019).
Creasy, J. M. et al. Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases. Eur. Radiol. 29, 458–467 (2019).
Google Scholar
Kawahara, D., Tang, X., Lee, C. K., Nagata, Y. & Watanabe, Y. Predicting the local response of metastatic brain tumor to gamma knife radiosurgery by radiomics with a machine learning method. Front. Oncol. 10, 569461 (2021).
Wang, Y. et al. The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study. Eur. Radiol. 32, 8737–8747 (2022).
Google Scholar
Yang, Y. et al. Spatial heterogeneity of edema region uncovers survival-relevant habitat of Glioblastoma. Eur. J. Radiol. 154, 110423 (2022).
Do, D. T., Yang, M. R., Lam, L. H. T., Le, N. Q. K. & Wu, Y. W. Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Sci. Rep. 12, 13412 (2022).
Boehm, K. M. & Khosravi, P. Harnessing multimodal data integration to advance precision oncology. 22, 114–126 (2022).
Cè, M. et al. Artificial intelligence in brain tumor imaging: a step toward personalized medicine. Curr. Oncol. 30, 2673–2701 (2023).
Google Scholar
Midya, A., Chakraborty, J., Gönen, M., Do, R. K. G. & Simpson, A. L. Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. J. Med. Imaging 5, 011020 (2018).
Zwanenburg, A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur. J. Nucl. Med. Mol. Imaging 46, 2638–2655 (2019).
Lambin, P. et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749–762 (2017).
Park, J. E. et al. A systematic review reporting quality of radiomics research in neuro-oncology: toward clinical utility and quality improvement using high-dimensional imaging features. BMC Cancer 20, 29 (2020).
Ambe, S. et al. Racial disparities in malignant primary brain tumor survival in Texas from 1995 to 2013. Cureus 12, e11710 (2020)
Butterfield, J. T. et al. Racial disparities in recommendations for surgical resection of primary brain tumours: a registry-based cohort analysis. Lancet 400, 2063–2073 (2022).
Google Scholar
Carrano, A., Juarez, J. J., Incontri, D., Ibarra, A. & Cazares, H. G. Sex-specific differences in glioblastoma. Cells 10, 1783 (2021).
Shreve, J. T., Khanani, S. A. & Haddad, T. C. Artificial intelligence in oncology: current capabilities, future opportunities, and ethical considerations. Am. Soc. Clin. Oncol. Educ. B. 42, 1–10 (2022)
Naik, N. et al. Legal and ethical consideration in artificial intelligence in healthcare: who takes responsibility? Front. Surg. 9, 862322 (2022).
Google Scholar
Amann, J., Blasimme, A., Vayena, E., Frey, D. & Madai, V. I. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 20, 310 (2020).
Holzinger, A., Langs, G., Denk, H., Zatloukal, K. & Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9, e1312 (2019).
DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D. & Winans, P. Functional magnetic resonance imaging (FMRI) of the human brain. J. Neurosci. Methods 54, 171–187 (1994).
Google Scholar
Assaf, Y. & Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J. Mol. Neurosci. 34, 51–61 (2008).
Google Scholar
Singh, N. M. et al. Data consistent deep rigid MRI motion correction. (2023).
Chen, Z. et al. Deep learning for image enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J. Digit. Imaging 36, 204 (2023).
Google Scholar
Han, K. et al. A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell. 45, 87–110 (2022).
Asiri, A. A. et al. Exploring the power of deep learning: fine-tuned vision transformer for accurate and efficient brain tumor detection in MRI scans. Diagnostics 13, 2094 (2023).
Google Scholar
Huang, L. et al. A transformer-based generative adversarial network for brain tumor segmentation. Front. Neurosci. 16, 1054948 (2022).
Saueressig, C., Berkley, A., Kang, E., Munbodh, R. & Singh, R. Exploring graph-based neural networks for automatic brain tumor segmentation. Lect. Notes Comput. Sci. 12611, 18–37 (2021).
Google Scholar
Ravinder, M. et al. Enhanced brain tumor classification using graph convolutional neural network architecture. Sci. Rep. 13, 1–22 (2023).
Google Scholar
Zeineldin, R. A. et al. Explainability of deep neural networks for MRI analysis of brain tumors. Int. J. Comput. Assist. Radiol. Surg. 17, 1673–1683 (2022).
Esmaeili, M., Vettukattil, R., Banitalebi, H., Krogh, N. R. & Geitung, J. T. Explainable artificial intelligence for human-machine interaction in brain tumor localization. J. Pers. Med. 11, 1213 (2021).
Google Scholar
Ogier du Terrail, J. et al. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nat. Med. 29, 135–146 (2023).
Google Scholar
Nasrallah, M. P. et al. Machine learning for cryosection pathology predicts the 2021 WHO classification of glioma. Med 4, 526-540.e4 (2023).
Romano, M. F., Shih, L. C., Paschalidis, I. C., Au, R. & Kolachalama, V. B. Large language models in neurology research and future practice. Neurology 101, 1058–1067 (2023).
Google Scholar
link